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Abstract. The integral equation method OEM) proposed in our previous paper to describe the 
thermoluminescence (n) kinetic in the general case of an arbitmy distribution of cenues over 
their parameters in the framework of the band kinetic model is numerically implemented in 
this paper. The simplest model is considered, when the thermal ionization is inherent only in 
Uap centres which are distributed over their activation energies because of B one-Gaussian-rype 
curve. We study the form of the n curves, dose dependences and some pre-heating computer 
expr imem in order to distinguish between cases of really discrete and continuous distributions 
of centres. We have demonsmted that. in the case of large remapping (in comparison with 
recombination). the application of the lm appears to be qui& important, and simple averaging 
of separate individual contributions of each centre lends U1 erronenus results. 

1. Introduction 

One of the most familiar approaches of studying the thermoluminescence (TL) processes in 
luminophors is based on the so-called band model. The TL process is described as a flow 
of electrons thermally released from trapping centres (TCS) through the lowest conduction 
band with their subsequent recombination on recombination centres (RCs) of a hole nature. 
This process is usually treated by solving a set of non-linear differential equations [ 1 4  for 
the electron concentration n;(t) and hole concentrations nT(t) occupying the i th  and j t h  
types of traps, respectively. 

However, this method is relevant only if the microscopic interaction between different 
traps in the crystal is negligibly small (i.e. they are strongly separated from each other in 
the space) and therefore all traps can be regarded as almost independent. This means that 
all traps (i.e. defects) of the same chemical nature are associated really with one and the 
same type i of TC (or j of RC) with respect to the TL process in question. However, if the 
concentration of traps increases, the quantum interaction between them becomes significant 
and therefore defect bands within forbidden gaps appear to be wider. This means that the 
traps having the same chemical nature cannot be considered as traps of the same type from 
the viewpoint of the TL process, since they have different activation energies (measured 
downwards from the bottom of the conduction band). 

The density %(E)  of states of the defect bands results in a continuous distribution 
Y ( E )  U %(e) (normalized to unity) of traps over their activation energies E.  Good evidence 
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for the distribution of traps in quartz has been demonstrated recently [5]. Also, because of 
the broad TL peak observed for A1203:C thermoluminophor [6] there remains no doubt that 
it should be attributed to a wide continuous distribution over the trap activation energies. 
There are some other examples of continuous distributions of trap parameters (usually, over 
activation energies) available in the literature (see for instance the reviews in [4,7]). 

Of course, it is rather a complicated task to use the usual set of n. equations mentioned 
above to solve the kinetic problem of the continuous distribution of traps in practice. First, 
for every energy Ei which results in '31(Ei) # 0, a new trap of the type i has to be associated. 
Thus, together with an infinite number of types i of traps we obtain an infinite number of 
TL equations. 

Of course, the infinite set of equations can be simulated numerically by a large but finite 
set of them. However, it is not that easy and there are several reasons for this. Firstly, the 
number of equations needed to achieve convergency to the actual distribution is usually very 
large [5], resulting in considerable computational costs. Secondly, as our experience shows, 
systems of very many simultaneous differential equations exhibit many numerical problems 
(weakly controlled demands as to the precision along the numerical integration, instability 
problems, etc.) and, as the parameters of the model are chosen somewhat dramatically, the 
numerical scheme may diverge as well. 

On the other hand, it is worth mentioning here that the usually treated case of a finite 
number of traps with discrete energy levels Ei (a discrete distribution) can also be treated 
using the notion of the continuous distribution 
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*(E) o( C 8 ( E  - E;). 
i 

Moreover, from the practical point of view, a continuous distribution *(E) containing, for 
example, a part *'(E)  which is too namow (it has a quite small dispersion) can be considered 
physically as being compiled from a continuous part *(E)-Q'(E) and the discrete level 
EO (the mean value of the *'(E)). Thus, many cases faced in practice can be covered by 
a model in which the common continuous distribution * ( E )  of traps is considered instead 
of the types i of them. 

Usually [2,8,9] the case of a continuous distribution is treated by averaging the 
individual contributions J&) produced by traps with different energies E ,  and the total 
output is assumed to be 

In this approximation the retrapping is underestimated since only the retrapping to parent 
traps is allowed, while the retrapping to traps with other energies is completely forbidden. 
It is clear that this simple model works quite well only in the case of the first-order kinetic 
when the retrapping process is negligible compared with the recombination process. At 
the same time, the account of the 'interaction' of traps (in the sense of their retrapping) 
cannot be underestimated while considering the TL process in the course of the second- 
order kinetic [IO]. However, in the latter case it is necessary to take into consideration the 
retrapping of carriers on every trap, i.e. we arrive at an infinite. number of the TL equations, 
which turn out to be quite tedious and may be calculated in some simple cases only [SI. 

In our previous paper [ 1 I] we have developed a new approach, the integral equation 
method (IEM), which permits us to consider an arbitrarily complex n. process (within the 
same band model), including the case of a continuous distribution of hole and/or electron 
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traps over their various parameters (such as activation energies and frequency factors), in a 
physically transparent way. We have shown that the infinite set of the TL kinetic equations 
can be equivalently transformed into only two (although rather complicated) equations with 
respect to two new auxiliary functions z - ( f )  and z+(t). They describe an accumulation 
of free charge carriers (electrons and holes) in the lowest conduction and highest valence 
bands, respectively, during the process of irradiation, temperature decayi and TL, which 
follow one after another. 

The equations solved in the IEM represent the rigorous equivalent of the usual TL kinetic 
equations and therefore are equally applicable to the same class of physical problems. At 
the same time, they are formulated in such a way that can be used in the case of both 
discrete and continuous distributions. This means that in practice they are sufficiently more 
useful since they can be implemented for any problem whereas the usual approach based on 
the set of differential equations cannot. On first glance, however, the integral4ifferential 
equations of the IEM seem to be very complicated and, only for this reason, they may be 
completely useless. These arguments are also supported by the fact that the problem of the 
numerical solution of the equations of the IEM has not been discussed yet. That is why the 
goal of the present paper is to show the possibility of solving these equation numerically 
for a quite simple but physically interesting problem rather than considering some ‘real’ 
processes in  some ‘real’ material and trying to reproduce some observations of a ‘real’ 
experiment. Our plan is to try to achieve the latter in subsequent papers. 

In the next section we briefly give a description of the IEM and introduce a simple 
model used here. Some remarks concerning the numerical method implemented to solve 
the equations are made in the appendix. In section 3 the results of numerical calculations, 
including dose dependences for both a peak position and a peak intensity, will be given and 
discussed. The two physically interesting cases of small retrapping (SR) and large retrapping 
(LR) are compared. Also, we demonstrate the shapes of the TL curves for different Gaussian- 
type distributions W ( E )  in order to compare the results obtained with those calculated for 
the case of a discrete distribution. 

2. Basic model from the viewpoint of the integral equation method 

In this paper we restrict ourselves to the following simple model. We suppose that only 
one discrete hole level is present and that the hole channel is used only during irradiation; 
it is also assumed that the hole thermal ionization is negligibly small (the corresponding 
thermal probability U+ 0). All equations are written in the case of a general continuous 
distribution W ( E )  of the T c s  over their activation energies E .  However, actual calculations 
are done for the Gaussian-type form of the distribution W ( E ) .  

Since the general case of the IEM has been discussed in [11] (although quite formally), 
we shall consider here the detailed derivation of the E M  equations for the particular model 
used in the present paper. The general kinetic equations governing the processes within the 
framework of the band model under the assumptions made above are [I-31 

t A process which happens between the irradiation and then.  It results in the additional redistribution of charge 
caniers due to the establishment of equilibrium after the abrupt end of irradiation. 
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dN'+(t)/df - N + d [ l  - n+(t)] + R (2c) 

N -  + n,(t) dE = NS + n+( t ) .  (2d) s 
The summation over the electronic traps in equation (2d) has been substituted by the 
integration over the energy E. The following notation has been adopted here: R is the 
generation rate of electron-hole pairs during the irradiation: U* are the trapping coefficients 
(it is assumed that U -  does not depend on E):  A is the recombination coefficient for 
electrons in the conduction band to interact with holes captured on the RC; v i  = u-W(E) 
is the concentration of the Tcs  with the energy E ,  distributed as a function *(E), U- being 
the total concentration of the Tcs. Also the superscripts + and - are used to distinguish 
between the hole and electron components, Thus, N+ and N- are the concentrations of 
free holes and electrons in the valence and the conduction bands, respectively, and n i ( t )  d E  
and n+(t) are the concentrations of the captured electrons and holes on the TCS (with the 
energy E )  and RC, respectively. Finally 

w;(t)  = woexp(-E/kT) 

is the probability of the thermal ionization of an electron from the TC with the energy E ,  q 
being the appropriate frequency factor not depending on E ,  as is adopted here for simplicity; 
T is the absolute temperature, while k is Boltzmann's constant. All parameters are defined 
with respect to the RC concentration ut, which can be chosen as a free parameter of the 
theory and has been set to unity. 

Let us start with the irradiation process ( R  # 0). We assume, as is usually done in 
such a study (see [5], for example) and is fulfilled in the experiment, that the corresponding 
temperature is constant and quite small and therefore the thermal ionization of electrons 
during the irradiation is negligible (0; N 0). Thus, equation ( 2 4  loses the last term on the 
right-hand side. Then, following the method developed in [ 111. we can solve formally the 
linear first-order differential equations (?a) and (26) with reference to nE( f )  and n+(t) and 
substitute the distributions obtained into equations (2c) and (2s). It was found in [ 111 that 
the auxiliary functions 

z*( t )  = 1' N+(s) d s  ~"(0) = 0 

are useful instead of the free-carrier concentrations N'(t). The new functions introduced 
describe the accumulation of the free charge in the bands during the processes. 

On the assumption that the initial concentrations on the TC and RC are equal to zero at 
the beginning of the irradiation process, we have for the distribution of the concentrations 

n i ( t )  = v,(l - exp[-u-z-(t)l} = u-[l - exp[-u-z-(t)]]lV(E) 
n+(t)  = U  + +  Q ( t )  

(3) 

(4) 

where 
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Then, the integration over E in equation (2d) can be performed quite easily since the 
only function of E is U; cx W(E) (see equation (3)). Thus, we arrive at the following set 
of equations with respect to the new auxiliary functions in the case of the irradiation: 

d2z+(t)/dt2 = R - o+[ l  - o+Q+(t)]dz+(t)/dt 

dz-(t)/dt + U - ( 1  - exp[-o-z-(t)]) = dz+(t)/dt + U + +  Q (t). 

( 6 4  

(66) 

It is necessary to emphasize that equations (5) are exact for the model in question in the 
sense that they are a direct consequence of equations (2) of the usual band model kinetic. 
The concentrations of trapped carriers during the irradiation are obtained directly from the 
functions z*(t) using equations (3) and (4). 

The temperature decay process follows immediately after the irradiation and is defined 
by the condition R = 0. It can be described simply by the same set of equations (5) and (6) 
provided that both these processes are considered within the same time scale: 0 < t < ti, 
refers to the irradiation process, R # 0, while t > tin (up to infinity) refers to the temperature 
decay process, R = 0. The quantity ti,, is the irradiation time which directly affects the 
dose absorbed by the sample: D a Rt,,. 

However, real calculations are carried out for a finite time interval while considering the 
temperature decay, since the physically correct condition describing the charge conservation 
law (see equations (24, (3) and (4) in the limit f + CO) 

nt(oo) = n,(ca)dE = U-(1  - exp[-a-z-(oo)l) (7) J 
is achieved quite rapidly after stopping the irradiation. 

While considering t h e n  process, it is more convenient to assume that both the processes 
considered above produce initial concentrations for it, and the time t is started again from 
t = 0. In this case we cannot neglect the last term on the right-hand side of equation (2a) 
describing the thermal release of electrons captured on the Tcs. Nevertheless, equation (2a) 
can still be formally solved with respect to n,(t),  giving [ll] 

n;(O = hexp[-f;(t)l+ ~ - V - Q E ( ~ ) P ' ( E )  (8) 

where 

where no = ~ + ( c o )  represents the initial concentration established just after the end of 
temperature decay, see equation (7). 

Then, during the TL process, the hole channel does not contribute (since R = 0 and, at 
the initial time moment, N' = 0), and therefore N+ = 0 at every time I =- 0. Therefore, 
for this reason, the first term in the right-hand part of equation (2b) must be omitted whereas 
equation (2c) can be ignored. That is why equation (26) can be easily solved, giving for 
the concentration of holes captured on the RC 
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Then, using equations (8) and (lo), as well as the definition of the auxiliary function 
z - ( t ) ,  we can rewrite equation (24 in the following form: 

dz-0 + no[P( t )  exp(-u-z-) - exp(-Az-)] = -u-u- ‘P(E)Q&) dE (11) 
d? s 

where z-(O) = 0 and a new auxiliary function has been introduced: 

P ( t )  = sY(E)exp(-SrwZ(r )dr )dE.  0 

Thus, in the IEM the TL process is governed by means of only one integraldifferentid 
equation (1 l), whereas two equations (6) (although considerably more simple) are needed as 
far as the irradiation and the temperature decay processes are concerned. The concentrations 
of localized charge carriers are calculated directly from the unique function z-(t)  using 
equations @)-(lo). 

Finally, the TL intensity of the light emission (the TL output) is obtained in the usual 
way [I-3,111 as the flux of recombination electrons (see equation (26)): 

J ( t )  o( N-An+(t) = -dn+(t)/dt c( [dz-(t)/dtJ exp[-Az-(r)]. (13) 

Equation (10) has been used while deriving the last step in equation (13). 
Thus, solving equations (9). (11) and (12) for only one unknown function z-(t) 

it is possible to extract complete information about the n. process, including detailed 
dependences on the time of the concentrations of localized electrons and holes, equations (8 )  
and (10). as well as the TL intensity, equation (13). Note that the TL current j ~ ~ ( 2 )  can also 
be expressed through our auxiliary function z - ( t ) ,  since 

j n ( t )  c( N - ( f )  = dz-(t)/dt. 

However, we have not calculated the current in this paper. 
Both sets of equations. equations (5) and (6) and equations (9). (1 1) and (12) are solved 

numerically by means of an indirect finite-difference method. Some details of the schemes 
developed for that purpose can be found in the appendix. 

3. Results and discussion 

In order to investigate the general properties of the equations stated above we have 
considered a model in which * ( E )  is represented as one Gaussian with the mean value 
of the trap energy Eo = 1.5 eV and dispersions ranging from do = 0.01 up to G$ = 0.2. 
The retrapping coefficient was chosen as follows: q = U-/A = IO-’ (SR or the first- 
order kinetic case), q = 1 (an intermediate kinetic) and q = 10’ (LR or the case of the 
second-order kinetic). All other parameters used in the calculations are listed in table 1. All 
calculations discussed below are carried out by means of the consequent scheme; for each 
set of parameters we performed all three stages (irradiation, temperature decay and TL) one 
after another using the output of the current stage as the input for the subsequent stage. 

In figure 1 we have represented TI. curves calculated by means of our rigorous equations 
in the case of a small dose (the irradiation time tin = 0.1 s) for different retrapping 
probabilities and different shapes of the Gaussian, starting from the narrowest (4 = 0.01, 
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Table 1. panmeters used in the present calculations (first four parameters are siven relatively 
to the "+), 

Parameter Value 

Y- 1.0 
A I .o 
U+ 1.0 
R 1 .o 
Ea 15 eV 
w 1013 s-I 
Heating rate I Ks-' 
Step over time 0.5 s 
Step over energy do14 

Figure 1. n curyes calculnted numerically for the cases of small retrapping, (a )  U - / A  = 
and large retrapping, ( b )  U - / A  = 10'. Curve 1: do = 0.01; CUM 2: do = 0.1; c w e  3: 
do = 0.2. 

almost the case of the discrete level with E = EO and v = w-), and ending with a rather 
spread distribution (do = 0.2). It is seen that, the larger the dispersion do, the wider is the 
corresponding TL curve, as it should be. Then, it is also evident from figure l ( a )  that in 
the case of SR (a  = IO-') we observe TL curves which have almost equal decreasing parts 
and almost unchanged peak positions with respect to the Gaussian chosen. The opposite 
situation is observed in the case of LR (figure l (b ) ) ;  we see a definite shift towards high 
temperatures of the peak positions (T,,,=) with increasing do. 

This behaviour is explained not only by peculiarities of the second-order kinetic which 
OCCUI here (non-linear dependence of the n intensity on the initial concentration of localized 
carriers [ 1,121) but also by the complex retrapping which is fully taken into account in the 
EM. In fact, released electrons have an opportunity to be retrapped on deeper TCS and in this 
way to increase their population [5 ,10 ] .  This leads to a definite increase in the deepest TC 
weights in the TL curve (the concentrations n,(t)  are no longer proportional to * ( E ) ;  see 
equation (8)) and results in a total shift in t h e n  curve in the direction of high temperatures. 
Note that this fact is ignored in the approximate schemes mentioned in the introduction, 
when all traps are considered as independent. Moreover, it is clear that this shift cannot be 
obtained in principle by means of that simple method. 

The same curves are shown in figure 2 but in a different way; in both figure 2(a)  and 
figure 2(b) we have fixed & and varied only the ratio 7 = u-/A. The shift in the TL curves 
with increasing ratio q is also evident here. Note that, in spite of the same irradiation time 
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Figure 2. n C U N ~ S  calculated numerically for the cases of adiscrete distribution, (a)  do = 0.01, 
and B continuous distribution, (b)  do = 0.2. Curve 1: a - / A  = curve 2: K I A  = 1: 
curve 3 a - J A  = IO2. 

tirr. the real dose absorbed by the sample is different for various 7-values since different 
retrapping conditions lead to different populations of traps during the irradiation process. 
That is why areas under each curve in figure 2 are different and increase together with 
the increase in the role played by the rekapping. It is seen also that the relative intensity 
of peaks shown in figure 2 changes from the case do = 0.01 (figure 2(u)) to do = 0.2 
(figure 2(b)) which also demonstrates the important role of the retrapping. 

The n peak intensities J,, at the maximum as well as the peak positions Tman are 
represented for some dose interval s .c ti, < IO4 s) in figures 3(u) and 3(b), 
respectively. We see from figure 3(u) that the TL intensity saturates for larger doses as 
'1 decreases. This property is apparently valid because the recombination process occurs 
during the irradiation and the temperature decay; in the case of SR a larger dose is needed 
to achieve saturation (when all traps are completely full; compare [SI) than in the case of 
LR. In order to explain the other peculiarities of the CUNS in figure 3 we have to address 
the detailed physical picture. 

Let us consider first the case of the narrow distribution (do = 0.01; broken curves). 
As the retrapping factor '1 increases, the TL peak shifts to higher temperatures, T,,,,(LR) > 
T,,(sR), owing to delay in the release of electrons from the traps (figure 3(b)). However, 
this effect is suppressed for large doses, and T,, tends to smaller values (for given q)% since 
at the beginning of the TL process all traps are almost full, and the retrapping almost does 
not contribute. As a result, more electrons have a possibility of being released earlier from 
their traps during the heating. At the same time the n peaks are broader for the LR than 
for the SR case (figure 3(u)), since in the former case it is more difficult to release electrons 
from their traps. Nevertheless, the inequality J-(LR) c: J,,,=(SR) is valid only under 
comparatively large doses, when in both cases (LR and SR) we have completely full traps 
and nO(LR) = no(SR). For smaller doses, however, another effect dominates, connected with 
the charge accumulation during the irradiation. Therefore we have here no(LR) t no(SR), 
and consequently J-(LR) z J-(SR) (figure 3(u)). 

The same analysis also holds for the case of a wide continuous distribution (do = 0.2; 
full curves). Let us compare this case with the previous one. Evident differences are 
explained by the role of a number of new factors which become important as & increases. 
Indeed, instead of almost one trap level E = Eo as in the former case, we deal here with 
a comparatively wide distribution of trap levels in the forbidden gap, although the total 
concentration of coupled electrons (and holes) is the same for given q. It apparently leads 
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Figure 3. The dependence of (a)  then peak intensity and (b) the position io the maximum. an 
the irradiated time for the case of small retrapping, curve I . C , ’ A  = and large retrapping, 
curve Z a - / A  = IOz, full curve do = 0.2; broken a w e  do = 0.01. 

to broadening of the TL peak (q is fixed) and to a decrease in its intensity at the maximum. 
That is why all the full curves in figure 3(u) appear to be below the corresponding broken 
curves. 

Then, especially in the case of LR, the retrapping on deeper levels also plays a significant 
role. For small doses when the traps are far from full, the retrapping results in a pronounced 
redistribution of trapped electrons, resettling them from shallow levels (located at the left- 
hand edge of the Gaussian) to deep levels (located at the right-hand edge of the Gaussian), 
and leads to larger T,,-values. This effect becomes more important as 7 increases. 
That is why in figure 3(b) for small doses (ti, < 1 s-I) we observe all the full curves 
lying above the broken curves (for the same q ) ,  and at the same time the difference 
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AT(LR) = T , , ( L R , ~ ~  = 0.2) - Tmur(LR,d0 = 0.01) is larger than AT(sR) calculated 
in the same way for SR. In the region of large doses (tlm 1 s-I) and for LR, all traps 
are completely full after the temperature decay process. Therefore, the effect of retrapping 
is almost switched off, and for the wide distribution (full curves) we observe an even 
smaller Tmax than for the narrow distribution (broken curves) in the region of large doses 
(figure 3(b)). Of course, this difference decreases as q decreases. 

Note that the crossing of the full and broken curves for SR (see figure 3(6)) occurs at 
almost the same dose value (tin Y 1 s-I) as for LR. The main explanation of this originates 
from the fact that the total retrapping probability is defined as the product of the retrapping 
coefficient U -  and the number U; - n,(t) of free places on the traps. For large 9 values 
(LR) the retrapping is suppressed only just before and within the saturation region, whereas 
for small q values (SR) this effect starts substantially before the saturation region, since 
u-(sR)/u-(LR) = in our calculations. 

Thus we see that figure 3 cannot be correctly explained without addressing the retrapping 
to deeper levels. This effect is completely taken into account in ow equations of the IEM, 
while it is ignored in all the usual approaches based on the assumption of independent trap 
levels (see equation (1)). Note that the effect of the retrapping has also been correctly 
considered in [5 ] ;  however, the direct numerical integration of the initial set of the kinetic 
equations (2) was implemented there (they had to consider 96 energy points E, ,  and therefore 
96 equations (2a) were explicitly considered in order to achieve good convergency to the 
actual distribution of traps). 

The last example regarded in the present paper deals with the following computer 
experiment: let a sample be subjected to some irradiation dose D a rim. Then, we heat 
the sample linearly up to some temperature Tprrb, immediately cool it to room temperature 
and heat it again (at the same rate) until all localized electrons are released. In this way 
we obtain two TL peaks, shifted with respect to each other. This computer experiment has 
been repeated for diffeent Tpreh. 

L N Kanforovich er a1 

- .... 1 / - Figure 4. The second peak position T,, 
versus h e  preheating tempemure Tamh from _ _ _ _ _ _ _ _ - -  

~~ 

h c  computer experiment explained in the 
text: curye I: a - / A  = IO-%; curve 2: 520 " " I ' ,  " " I ' I ,  I . ,  " ' I ' " " I ' " " "ido 
q- ,A  = loz, curye du = o,2, broken 1 do 260 360 

Preheating temperature, C' curved0 =O.Ol. 

The dependence of the second peak position T ,  on the pre-heating temperature Tpr& 
is shown in figure 4. It is seen that in the case of the first-order kinetic and the discrete 
distribution (do = 0.01) the peak positions remain almost unchanged under the Tpreh 
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variation. However, on increasing da (i.e. the role of retrapping in deeper traps) a significant 
shift in the second peak is observed as Tpreeh is increased. Note also that this shift occurs 
even for the ‘discrete’ distribution (do = 0.01) in the case of the second-order kinetic 
(q = lo2),  but this effect becomes substantially more important for a large continuous 
distribution width (i.e. large do). 

Evidently, this behaviour is due to the complex character of the traps in question. 
Indeed, during the first (pre-heating) step (heating to Tpiph), only the TCS which are active 
at those temperatures are released. This results in some alternation of the initial distribution 
of electrons from n&) a V(E) (at the beginning of the first step; see equation (3)) to that 
given by equation (8 )  (after the first step and at the beginning of the second step). Thus, 
deeper TCS become more important in the second step and produce a shift in the TL peak 
in the high-temperature direction. We think that the same experiment but performed in a 
laboratory may indicate the existence of the continuous distribution of traps in a sample. 

4. Conclusions 

In the present paper we have demonstrated some results of the TL simulation in the model in 
which Tcs are considered as continuously distributed over their activation energies. We have 
shown that the new equations of the IEM derived in [ I  11 for the first time may be effectively 
numerically solved, leading to a time-efficient and stable numerical scheme. The results 
obtained demonstrate quite evidently their correct physical meaning, confirming the validity 
of the solutions. We hope that the IEM can be implemented in a wide range of problems of 
solid state n dosimetry. 
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Appendix 

In the method developed in the present paper the usual net of times is introduced r, = i At 
(i = 0. 1.2, , , .). All the derivatives are substituted by finite differences using the function 
values at the current ( i )  and at the preceding (i - 1) time moments. For instance, 
dz-(ti)/dt - dz,:/dt = (z; - zc:,)/At, However, several important points ought to be 
mentioned here. 

(i) In the case of equations (5) and (6)  we have found it convenient to split the set of 
second-order equations into a set of first-order equations by making use of the substitution 

(ii) The integrals Q+(t)  (equation (Sa)) and e,&) (equation (9a)) are calculated by 
means of the trapezoidal method and are considered at the preceding time moment. 

(iii) The integrals over the energy E in equations ( 1 1 )  and (12) were calculated by 
means of the well known Simpson rule on a net [ E j ]  of energy points. 

(iv) It was found to be quite important, however, to take into account correctly the non- 
linear character (over the unknown function z-( t ) )  of the exponents on the left-hand sides 
of equations (66) and ( 1  1). This means that these exponents were considered at the current 

y ( r )  = z+( t ) .  
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time moment t i  and the corresponding non-linear algebraic equations over z; were solved 
at each iteration (for each point I , )  in both cases under consideration. Note that, in the 
direct finite-difference methods, only the derivatives involve the function at the current time 
moment whcreas the residual part of the equations are considered at the preceding time 
moment. Our analysis showed, however, that this simple method fails for the problems 
under consideration. 

The numerical calculating schemes developed in this way were checked very carefully 
using different heating regimes including very complicated regimes (for instance, a staircase 
with different steps used in the fractional glow-curve experiments [2,9]). They were found 
to be quite stable and cheap and demand very small time or energy discretization intervals 
(Ar and AB,  respectively). 

L N Kantorovich et a1 
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